-
分振幅型全Stokes同时偏振成像仪具有实时性好、空间分辨率高、精度高等优点, 有很高的应用价值. 分振幅型全Stokes同时偏振成像系统利用偏振分束器、1/2波片和1/4波片将入射光Stokes矢量调制在4幅图像中, 可解析入射光Stokes矢量. 1/2波片和1/4波片的相位延迟误差对Stokes矢量测量精度有着不可忽略的影响. 建立了包含上述两种误差的Stokes矢量测量误差方程, 分析了1/2波片和1/4波片相位延迟耦合误差对自然光、0°/45°线偏光、左旋圆偏光等典型基态入射光的Stokes矢量测量误差的影响, 推导了任意偏振态的Stokes矢量测量误差的表征方法. 在邦加球球面和球内选取不同偏振度的Stokes矢量作为入射光进行仿真. 结果表明, Stokes矢量测量误差和偏振度测量误差均随着入射光偏振度的增大而增大. 选取入射光偏振度为1时的偏振测量精度评估系统. 为满足2%的偏振测量精度, 1/2波片相位延迟误差应在±1.6°内, 1/4波片相位延迟误差应在±0.5°内. 这对提高系统的偏振测量精度具有重要意义, 为系统设计和研制提供了重要的理论指导.The division-of-amplitude full Stokes simultaneous polarization imaging system has prominent merits, such as real time, high spatial resolution, high precision, etc. The development of the division-of-amplitude full Stokes simultaneous polarization imaging system has a high application value. The division-of-amplitude full Stokes simultaneous polarization imaging system uses polarization beam splitters, a half wave plate (HWP) and a quarter wave plate (QWP) to modulate the incident Stokes vector into four intensity images. Using the four intensity images, the incident Stokes vector can be analyzed. In the system, the phase delay errors of the HWP and the QWP have a direct influence on the measurement accuracy of the incident Stokes vector. A Stokes vector measurement error equation containing the phase delay errors of the HWP and the QWP is established. When there are the phase delay errors of the HWP and the QWP in the system, the Stokes vector measurement errors of the unpolarized light, 0° liner polarized light, 90° liner polarized light, 45° liner polarized light, 135° liner polarized light, right circularly polarized light and left circularly polarized light are analyzed. A method of solving the Stokes vector measurement error of incident light with any polarization state is given. When the Stokes vectors with different degrees of polarization (DOPs) are used as the incident light, the simulation results show that both the Stokes vector measurement error and the DOP measurement error increase with the DOP of incident light increasing. Therefore, we select the polarization measurement accuracy to evaluate the system when the DOP of incident light equals 1. To ensure that the polarization measurement accuracy of the system is within 2%, the phase delay error of the HWP should be within ±1.6° and the phase delay error of the QWP should be within ±0.5°. The analysis results of the phase delay errors of the HWP and the QWP are of great significance for improving the polarization measurement accuracy of the division-of-amplitude full Stokes simultaneous polarization imaging system, and also provide important theoretical guidance in designing and developing the system.
-
Keywords:
- polarization imaging/
- wave plate/
- phase delay error/
- Stokes vector
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] -
参数名称 参数值 1/2波片相位延迟量
(Retardance of HWP)180° 1/4波片相位延迟量
(Retardance of QWP)90° 1/2波片快轴方位角
(Fast axis orientation of HWP)−22.5° 1/4波片快轴方位角
(Fast axis orientation of QWP)45° 部分偏振分束器分束比
(Splitting ratio of PPBS)Tp/Ts= 0.8/0.2 $\sigma $ $\delta$ −1.0° −0.9° −0.6° −0.5° 0° 0.5° 0.6° 0.9° 1.0° −3.2° 3.22% 3.07% 2.65% 2.53% 2.03% 2.54% 2.68% 3.11% 3.26% −3.1° 3.17% 3.02% 2.59% 2.47% 1.97% 2.48% 2.62% 3.05% 3.20% −1.7° 2.50% 2.32% 1.82% 1.66% 1.06% 1.67% 1.83% 2.33% 2.50% −1.6° 2.46% 2.28% 1.77% 1.61% 1.00% 1.62% 1.78% 2.28% 2.46% −0.5° 2.13% 1.92% 1.31% 1.12% 0.31% 1.12% 1.31% 1.92% 2.13% 0° 2.09% 1.88% 1.25% 1.04% 0 1.04% 1.25% 1.88% 2.09% 0.5° 2.13% 1.92% 1.32% 1.12% 0.31% 1.12% 1.32% 1.92% 2.13% 1.6° 2.45% 2.27% 1.77% 1.62% 1.00% 1.61% 1.77% 2.27% 2.45% 1.7° 2.49% 2.31% 1.82% 1.67% 1.06% 1.66% 1.82% 2.31% 2.49% 3.1° 3.20% 3.05% 2.64% 2.50% 1.95% 2.46% 2.59% 3.02% 3.17% 3.2° 3.25% 3.11% 2.70% 2.57% 2.02% 2.52% 2.65% 3.07% 3.22% $\sigma$ $\delta $ −1.0° −0.9° −0.6° −0.5° 0° 0.5° 0.6° 0.9° 1.0° −3.2° 4.01% 4.01% 4.01% 4.01% 4.01% 4.01% 4.01% 4.01% 4.01% −3.1° 3.88% 3.88% 3.88% 3.88% 3.88% 3.88% 3.88% 3.88% 3.88% −1.7° 3.48% 3.14% 2.11% 2.11% 2.11% 2.11% 2.11% 3.14% 3.48% −1.6° 3.48% 3.14% 2.09% 1.99% 1.99% 1.99% 2.09% 3.14% 3.48% −0.5° 3.48% 3.14% 2.09% 1.74% 0.62% 1.74% 2.09% 3.14% 3.48% 0° 3.48% 3.14% 2.09% 1.74% 0 1.74% 2.09% 3.14% 3.48% 0.5° 3.48% 3.14% 2.09% 1.74% 0.62% 1.74% 2.09% 3.14% 3.48% 1.6° 3.48% 3.14% 2.09% 1.99% 1.99% 1.99% 2.09% 3.14% 3.48% 1.7° 3.48% 3.14% 2.11% 2.11% 2.11% 2.11% 2.11% 3.14% 3.48% 3.1° 3.88% 3.88% 3.88% 3.88% 3.88% 3.88% 3.88% 3.88% 3.88% 3.2° 4.01% 4.01% 4.01% 4.01% 4.01% 4.01% 4.01% 4.01% 4.01% 参数名称 参数值 He-Ne激光器输出波长 632.99 nm He-Ne激光器光强稳定性 ± 0.1% 电动转台旋转精度 0.005° 偏振片消光系数 ≥ 10000∶1 零级QWP相位延迟量 89.87°@632.99 nm 参数名称 参数值 PPBS分束比${{T_{\rm p}^{({\rm PPBS})}} / {T_{\rm s}^{({\rm PPBS})}}}$ 0.788/0.191 零级HWP相位延迟量 179.74°@632.99 nm 零级QWP相位延迟量 89.87°@632.99 nm 零级HWP快轴方位角 −22.5° 零级QWP快轴方位角 45° PBS1分束比${{T_{\rm{p}}^{({\rm{PBS1}})}} / {T_{\rm{s}}^{({\rm{PBS1}})}}}$ 0.981/0.0007 PBS2分束比${{T_{\rm{p}}^{({\rm{PBS2}})}} / {T_{\rm{s}}^{({\rm{PBS2}})}}}$ 0.988/0.0008 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21]
计量
- 文章访问数:9085
- PDF下载量:130
- 被引次数:0