搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

刘会龙, 胡总华, 夏菁, 吕彦飞

Generation and applications of non-diffraction beam

Liu Hui-Long, Hu Zong-Hua, Xia Jing, Lü Yan-Fei1\2
PDF
导出引用
  • 近年来,随着激光技术的快速发展,相继产生了多种在远距离传输后中心光斑保持不变的无衍射光束,包括贝塞尔光束、高阶贝塞尔光束、马丢光束、高阶马丢光束、余弦光束、抛物线光束以及艾里光束.无衍射光束在激光打孔、激光精密准直、光学精密控制、光学微操控、光通信、等离子体导向、光子弹产生、光通信、自聚焦光束的合成以及非线性光学等领域中有着广泛的应用.本文介绍了各类无衍射光束的数学表达式、产生方法及对应的实验结果;就无衍射光束的特性和应用进行了归纳和讨论;并对其在未来的研究与应用前景中发挥的重要作用进行了简要总结与展望.
    In recent years, with the development of laser technology, various non-diffraction beams each with a central spot unchanged after a long distance propagation, have been generated, they being the Bessel beam, higher Bessel beam, Mathieu beam, higher Mathieu beam, cosine beam, parabolic beam, and Airy beam. Diffraction-free beams are widely used in laser drilling, laser precision alignment, optical precision control, optical micromanipulation, optical communication, plasma guidance, light bullet, synthesis of autofocusing beam, nonlinear optics, etc. In this paper, the expressions, generation methods and corresponding experimental results of the various non-diffraction beams are presented. There are many ways to generate the Bessel beam, they being circular slit, computed hologram, spherical aberration lens, resonant cavity, axicon, and metasurface. The main methods of generating the non-diffraction beams are summarized, and each method is analyzed in depth from the cost of the system, and then some suggestions for improving and perfecting are made. For the generation of non-diffraction beams, the passive methods are used most to convert other beams into corresponding non-diffraction beams by optical components. Due to the low damage threshold and high cost of optical components, the power, energy and beam quality of a non-diffracting beam will be limited. How to generate a high-power, high-beam quality non-diffracting beam will be a hot research spot. Diffractionless beams have attracted a great deal of interest due to their unique non-diffraction, transverse-accelerating (or self-bending) and self-healing property. Transverse-accelerating property refers to that non-diffraction beams propagate along a parabola trajectory. The diffractionless beams' propagation trajectory control method implemented by changing system parameters is simple and easily successful, but cannot reverse acceleration direction, and its controlling range is limited. The self-healing property means that the non-diffraction beam tends to reform during propagation in spite of severe perturbations imposed. Both the Airy beam and the Bessel beam exhibit self-healing properties during propagation. And non-diffraction beams have potential applications in many fields. In atmosphere, such as in optical communication, non-diffracting beam exhibits more resilience against perturbations. Finally, brief summary and outlook of non-diffraction beams playing important roles in future study, and their application prospects are presented. In addition to Airy beam and Bessel beam, for other non-diffraction beams due to the complexity of the beams themselves, by comparison, their applications are investigated very little, so the applications in Mathieu beam, cosine beam, and parabolic beam will be a hot research spot.
        通信作者:吕彦飞,optik@sina.com
      • 基金项目:国家自然科学基金(批准号:61765015,61475026,61275135,61108029)、云南省高端科技人才引进计划(批准号:2016HE009,2016HE010)、云南省应用基础重点研究计划(批准号:2016FA025)和云南大学研究生科研创新项目(批准号:YDY17012)资助的课题.
        Corresponding author:Lü Yan-Fei1\2,optik@sina.com
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 61765015, 61475026, 61275135, 61108029), the Top Talents Introduction Program of Yunnan Province, China (Grant Nos. 2016HE009, 2016HE010), the Yunnan Provincial Key Program for Basic Research, China (Grant No. 2016FA025), and the Yunnan University's Research Innovation Fund for Graduate Students (Grant No. YDY17012).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

    • [1] 陆万利.锥角调制的圆艾里涡旋光束构建光学针. 必威体育下载 , 2024, 0(0): .doi:10.7498/aps.73.20240878
      [2] 魏祥, 吴智政, 曹战, 王园园, DzikiMbemba.基于磁液变形镜生成弯曲轨迹自加速类贝塞尔光束. 必威体育下载 , 2019, 68(11): 114701.doi:10.7498/aps.68.20190063
      [3] 尹霄丽, 郭翊麟, 闫浩, 崔小舟, 常欢, 田清华, 吴国华, 张琦, 刘博, 忻向军.汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析. 必威体育下载 , 2018, 67(11): 114201.doi:10.7498/aps.67.20180155
      [4] 于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣.贝塞尔-高斯涡旋光束相干合成研究. 必威体育下载 , 2018, 67(13): 134203.doi:10.7498/aps.67.20180325
      [5] 陈欢, 凌晓辉, 何武光, 李钱光, 易煦农.基于Pancharatnam-Berry相位调控产生贝塞尔光束. 必威体育下载 , 2017, 66(4): 044203.doi:10.7498/aps.66.044203
      [6] 陈卫军, 卢克清, 惠娟利, 张宝菊.饱和非线性介质中艾里-高斯光束的传输与交互作用. 必威体育下载 , 2016, 65(24): 244202.doi:10.7498/aps.65.244202
      [7] 乐阳阳, 张兴宇, 杨波, 陆蓉儿, 洪煦昊, 张超, 秦亦强, 朱永元.一种含时贝塞尔光束的理论性质研究. 必威体育下载 , 2016, 65(14): 144201.doi:10.7498/aps.65.144201
      [8] 刘莎, 李亚飞, 蔡先勇, 张楠.像散飞秒贝塞尔光在石英玻璃中刻写双芯光波导的研究. 必威体育下载 , 2016, 65(19): 194210.doi:10.7498/aps.65.194210
      [9] 于湘华, 姚保利, 雷铭, 严绍辉, 杨延龙, 李润泽, 蔡亚楠.无衍射特殊光束的产生与三维表征. 必威体育下载 , 2015, 64(24): 244203.doi:10.7498/aps.64.244203
      [10] 刘绩林, 陈子阳, 张磊, 蒲继雄.角向偏振无衍射光束的传输特性及其偏振态研究. 必威体育下载 , 2015, 64(6): 064201.doi:10.7498/aps.64.064201
      [11] 赵娟莹, 邓冬梅, 张泽, 刘京郊, 姜东升.自加速类贝塞尔-厄米-高斯光束的理论和实验研究. 必威体育下载 , 2014, 63(4): 044204.doi:10.7498/aps.63.044204
      [12] 范丹丹, 吴逢铁, 程治明, 朱健强.非相干光源无衍射光的自重建. 必威体育下载 , 2013, 62(10): 104219.doi:10.7498/aps.62.104219
      [13] 杜团结, 王涛, 吴逢铁.轴棱锥对无衍射光束的线聚焦特性. 必威体育下载 , 2013, 62(13): 134103.doi:10.7498/aps.62.134103
      [14] 崔省伟, 陈子阳, 胡克磊, 蒲继雄.部分相干Airy光束及其传输的研究. 必威体育下载 , 2013, 62(9): 094205.doi:10.7498/aps.62.094205
      [15] 张泽, 刘京郊, 张鹏, 倪培根, Prakash Jai, 胡洋, 姜东升, Christodoulides Demetrios N, 陈志刚.多艾里光束合成自聚焦光束的实验实现. 必威体育下载 , 2013, 62(3): 034209.doi:10.7498/aps.62.034209
      [16] 任志君, 吴琼, 周卫东, 吴根柱, 施逸乐.空间诱导产生艾里-贝塞尔光弹研究. 必威体育下载 , 2012, 61(17): 174207.doi:10.7498/aps.61.174207
      [17] 范丹丹, 张前安, 程治明, 郑维涛, 吴逢铁.Bessel光束自重建的模拟仿真与实验验证. 必威体育下载 , 2012, 61(16): 164103.doi:10.7498/aps.61.164103
      [18] 卢文和, 吴逢铁, 马宝田.环形障碍物-轴棱锥产生局域空心光束. 必威体育下载 , 2010, 59(9): 6101-6105.doi:10.7498/aps.59.6101
      [19] 吴逢铁, 江新光, 刘彬, 邱振兴.轴棱锥产生无衍射光束自再现特性的几何光学分析. 必威体育下载 , 2009, 58(5): 3125-3129.doi:10.7498/aps.58.3125
      [20] 王喜庆, 吕百达.贝塞耳函数调制的高斯光束通过有光阑ABCD光学系统的传输. 必威体育下载 , 2001, 50(4): 682-685.doi:10.7498/aps.50.682
    计量
    • 文章访问数:15209
    • PDF下载量:1199
    • 被引次数:0
    出版历程
    • 收稿日期:2018-06-25
    • 修回日期:2018-08-02
    • 刊出日期:2018-11-05

      返回文章
      返回
        Baidu
        map