搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光

Overview and advances in skyrmionics

Zhao Wei-Sheng, Huang Yang-Qi, Zhang Xue-Ying, Kang Wang, Lei Na, Zhang You-Guang
PDF
导出引用
  • 在过去的半个世纪中,微电子技术一直沿着著名的摩尔定律快速发展,当前已经达到单芯片可集成上百亿晶体管.然而随着晶体管尺寸的缩小,因量子效应所产生的漏电流及其所导致的热效应使得这一定律遇到瓶颈.自旋电子技术由于引入了电子自旋这一全新的自由度,将有望大幅度降低器件功耗,突破热效应枷锁.斯格明子是一种具有拓扑保护的类粒子自旋结构,有望成为下一代自旋电子信息载体,引起了从物理到电子领域的广泛关注.由于其特殊的拓扑性质,斯格明子具备尺寸小、结构稳定、驱动阈值电流小等诸多优点,室温下斯格明子的成核、输运及探测进一步验证了其广泛的应用潜力,由此诞生了研究相关器件及应用的斯格明子电子学.本综述从电子学角度首先介绍斯格明子的基础概念及发展现状、理论及实验研究方法,重点阐述斯格明子器件的写入、调控及读取功能,介绍了一系列具有代表性的新型信息器件;最后,结合斯格明子电子学现状分析了目前所面临的发展瓶颈以及未来的应用前景.
    Microelectronic technologies have been developing rapidly in the past half-century following the famous Moore's Law. However, this tendency is beginning to break down due to the thermal effects induced by the leakage current and data traffic. Spintronics sheds light on eliminating this bottleneck by using the spin degree of electron, which attracts great attention from both the academia and industry. The magnetic skyrmion is a particle-like spin texture with topological protection, envisioned as an energy efficient spintronic information carrier due to its nanoscale size, ultra-low driven energy, and high thermal stability. Recent research progress shows that the nucleation, transportation, and detection of skyrmion in room temperature, which affirm its potential application in electronics, lead to a new research field called skyrmionics. In this review article, we first introduce the fundamental concepts and recent progress of magnetic skyrmions, from both the theoretical and experimental point of view. Different types of magnetic skyrmions have different properties due to their physical dynamics. We only focus on the skyrmions stabilized by Dzyaloshinskii-Moriya interaction (DMI) in the ultra-thin film structures as their small size, high mobility and room temperature stability can provide the perspectives for electronic devices. The skyrmions have already been extensively investigated from both the theoretical and experimental aspects in recent years. Micromagnetic simulation is the main approach to theoretically studying the dynamics of skyrmions and their applications. Most of the innovative skyrmionic devices have first been demonstrated by this method. Experimentally, skyrmions can be measured by various methods, such as the neutron scattering, Lorentz transmission electron microscopy, scanning X-ray transmission microscopy, polar magneto-optical Kerr effect microscope, etc. In the third part of this paper, we present four basic functions of skyrmionic devices ranging from nucleation, motion, detection, to manipulation. The nucleation of skyrmions, corresponding to the information writing in skyrmionic devices, has been widely investigated. A skyrmion can be nucleated by conversion from domain wall pairs, local spin injection, local heating, and spin waves. Then, we focus on the current induced skyrmion motion and compare the two different torques:the spin transfer torque and the spin orbit torque. To read the data, it is necessary to detect skyrmions electrically. One way is to measure the topological Hall effect in a Hall bar. More commonly, skyrmions can be detected through magnetoresistance effects, i.e., giant magnetoresistance/anisotropic magnetoresistance, tunnel magnetore sistance, and non-collinear magnetoresistance, in a junction geometry. For manipulation, it is mainly demonstrated by the voltage controlled magnetic anisotropy (VCMA). Finally we discuss several representative skyrmionic nano-devices in memory, logic, and neuromorphic applications. The magnetic tunnel junction and the racetrack are two common designs for skyrmionic memory devices. The former can store multiple values in one bit, and the latter can realize fast and efficient data transmission. To control the skyrmionic data in these memories, the VCMA effect is one of the promising approaches, which is used in several designs. For the skyrmionic logic devices, they can be divided into two main types:the transistor and the logic gate. However, until now, these ideas are only demonstrated in simulation, and more efforts in experiment are needed. Besides, novel devices such as artificial synapses and neurons can be realized more naturally by skyrmion due to its particle-like property. In summary, skyrmionics is promising in several aspects, including performance improvement, emerging function and architecture design, and bio-inspired computing. Remarkable progress has been made in the past few years, however the device integration, the materials, and the data transmission still restrict its application. We hope this overview article may present a clear picture about skyrmionics and receive more attention, thus promoting its fast research and development in the future.
        通信作者:赵巍胜,Weisheng.zhao@buaa.edu.cn
      • 基金项目:高等学校学科创新引智计划(批准号:B16001)、国家科技部国际科技合作与交流项目(批准号:2015DFE12880)和国家自然科学基金(批准号:61501013,61627813,61571023)资助的课题.
        Corresponding author:Zhao Wei-Sheng,Weisheng.zhao@buaa.edu.cn
      • Funds:Project supported by the Program of Introducing Talents of Discipline to Universities in China (Grant No. B16001), the International Collaboration Project from the Ministry of Science and Technology in China (Grant No. 2015DFE12880), and the National Natural Science Foundation of China (Grant Nos. 61501013, 61627813, 61571023).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

    • [1] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏.磁子霍尔效应. 必威体育下载 , 2024, 73(1): 017501.doi:10.7498/aps.73.20231589
      [2] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭.基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器. 必威体育下载 , 2024, 73(13): 137502.doi:10.7498/aps.73.20240129
      [3] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒.基于二维磁性材料的自旋轨道力矩研究进展. 必威体育下载 , 2024, 73(1): 017502.doi:10.7498/aps.73.20231244
      [4] 牛鹏斌, 罗洪刚.马约拉纳费米子与杂质自旋相互作用的热偏压输运. 必威体育下载 , 2021, 70(11): 117401.doi:10.7498/aps.70.20202241
      [5] 王力, 刘静思, 李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明.旋量玻色-爱因斯坦凝聚体拓扑性质的研究进展. 必威体育下载 , 2020, 69(1): 010303.doi:10.7498/aps.69.20191648
      [6] 李小影, 黄灿, 朱岩, 李晋斌, 樊济宇, 潘燕飞, 施大宁, 马春兰.-(Zn,Cr)S(111)表面上的Dzyaloshinsky-Moriya作用:第一性原理计算. 必威体育下载 , 2018, 67(13): 137101.doi:10.7498/aps.67.20180342
      [7] 黄灿, 李小影, 朱岩, 潘燕飞, 樊济宇, 施大宁, 马春兰.第一性原理计算Co/h-BN界面上的微弱Dzyaloshinsky-Moriya相互作用. 必威体育下载 , 2018, 67(11): 117102.doi:10.7498/aps.67.20180337
      [8] 轩胜杰, 柳艳.周期性应变调控斯格明子在纳米条带中的运动. 必威体育下载 , 2018, 67(13): 137503.doi:10.7498/aps.67.20180031
      [9] 张蕾.斯格明子相关的螺旋磁有序体系的临界行为. 必威体育下载 , 2018, 67(13): 137501.doi:10.7498/aps.67.20180137
      [10] 盛宇, 张楠, 王开友, 马星桥.自旋轨道矩调控的垂直磁各向异性四态存储器结构. 必威体育下载 , 2018, 67(11): 117501.doi:10.7498/aps.67.20180216
      [11] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国.磁性斯格明子的多场调控研究. 必威体育下载 , 2018, 67(13): 137507.doi:10.7498/aps.67.20180931
      [12] 孟康康, 赵旭鹏, 苗君, 徐晓光, 赵建华, 姜勇.铁磁/非磁金属异质结中的拓扑霍尔效应. 必威体育下载 , 2018, 67(13): 131202.doi:10.7498/aps.67.20180369
      [13] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳.磁斯格明子器件及其应用进展. 必威体育下载 , 2018, 67(13): 137505.doi:10.7498/aps.67.20180894
      [14] 梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平.磁性斯格明子的赛道存储. 必威体育下载 , 2018, 67(13): 137510.doi:10.7498/aps.67.20180764
      [15] 谷晓芳, 钱轩, 姬扬, 陈林, 赵建华.(Ga,Mn)As中电流诱导自旋极化的磁光Kerr测量. 必威体育下载 , 2012, 61(3): 037801.doi:10.7498/aps.61.037801
      [16] 胥建卫, 王顺金.电子的相对论平均场理论与一阶、二阶Rashba效应. 必威体育下载 , 2009, 58(7): 4878-4882.doi:10.7498/aps.58.4878
      [17] 任俊峰, 张玉滨, 解士杰.铁磁/有机半导体/铁磁系统的电流自旋极化性质研究. 必威体育下载 , 2007, 56(8): 4785-4790.doi:10.7498/aps.56.4785
      [18] 任俊峰, 付吉永, 刘德胜, 解士杰.自旋注入有机物的扩散理论. 必威体育下载 , 2004, 53(11): 3814-3817.doi:10.7498/aps.53.3814
      [19] 孙丰伟, 邓 莉, 寿 倩, 刘鲁宁, 文锦辉, 赖天树, 林位株.量子阱中电子自旋注入及弛豫的飞秒光谱研究. 必威体育下载 , 2004, 53(9): 3196-3199.doi:10.7498/aps.53.3196
      [20] 秦建华, 郭 永, 陈信义, 顾秉林.磁电垒结构中自旋极化输运性质的研究. 必威体育下载 , 2003, 52(10): 2569-2575.doi:10.7498/aps.52.2569
    计量
    • 文章访问数:10844
    • PDF下载量:926
    • 被引次数:0
    出版历程
    • 收稿日期:2018-03-28
    • 修回日期:2018-05-17
    • 刊出日期:2018-07-05

      返回文章
      返回
        Baidu
        map