搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

张心正, 夏峰, 许京军

The mechanisms and research progress of laser fabrication technologies beyond diffraction limit

Zhang Xin-Zheng, Xia Feng, Xu Jing-Jun
PDF
导出引用
  • 随着纳米科技和微纳电子器件的发展,制造业对微纳加工技术的要求越来越高.激光加工技术是一种绿色先进制造技术,具有巨大的发展潜力,已广泛应用于不同的制造领域.为实现低成本、高效率、大面积尤其是高精度的激光微纳加工制造,研究和发展激光超衍射加工技术具有十分重要的科学意义和应用价值.本文首先阐述了基于非线性效应的远场激光直写超衍射加工技术的原理与国内外发展状况,包括激光烧蚀加工技术、激光诱导改性加工技术和多光子光聚合加工技术等;然后介绍了几种基于倏逝波的近场激光超衍射加工技术,包括扫描近场光刻技术、表面等离子激元光刻技术等新型超衍射激光近场光刻技术的机理与研究进展;最后对激光超衍射加工中存在的问题及未来发展方向进行了讨论.
    Laser is recognized as one of the top technological achievements of 20th century and plays an important role in many fields, such as medicine, industry, entertainment and so on. Laser processing technology is one of the earliest and most developed applications of laser. With the rapid development of nanoscience and nanotechnology and micro/nano electronic devices, the micro/nanofabrication technologies become increasingly demanding in manufacturing industries. In order to realize low-cost, large-area and especially high-precision micro-nanofabrication, it has great scientific significance and application value to study and develop the laser fabrication technologies that can break the diffraction limit. In this article, the super resolution laser fabrication technologies are classified into two groups, far-filed laser direct writing technologies and near-field laser fabrication technologies. Firstly, the mechanisms and progress of several far-field laser direct writing technologies beyond the diffraction limit are summarized, which are attributed to the lasermatter nonlinear interaction. The super-diffraction laser ablation was achieved for the temperature-dependent reaction of materials with the Gaussian distribution laser, and the super-diffraction laser-induced oxidation in Metal-Transparent Metallic Oxide grayscale photomasks was realized by the laser-induced Cabrera-Mott oxidation process. Besides, the multi-photon polymerization techniques including degenerate/non-degenerate two-photon polymerization are introduced and the resolution beyond the diffraction limit was achieved based on the third-order nonlinear optical process. Moreover, the latest stimulated emission depletion technique used in the laser super-resolution fabrication is also introduced. Secondly, the mechanisms and recent advances of novel super diffraction near-field laser fabrication technologies based on the evanescent waves or surface plasmon polaritons are recommended. Scanning near-field lithography used a near-field scanning optical microscope coupled with a laser to create nanoscale structures with a resolution beyond 100 nm. Besides, near-field optical lithography beyond the diffraction limit could also be achieved through super resolution near-field structures, such as a bow-tie nanostructure. The interference by the surface plasmon polariton waves could lead to the fabrication of super diffraction interference fringe structures with a period smaller than 100 nm. Moreover, a femtosecond laser beam could also excite and interfere with surface plasmon polaritons to form laser-induced periodic surface structures. Furthermore, the super-resolution superlens and hyperlens imaging lithography are introduced. Evanescent waves could be amplified by using the superlens of metal film to improve the optical lithography resolution beyond the diffraction resolution. The unique anisotropic dispersion of hyperlens could provide the high wave vector component without the resonance relationship, which could also realize the super resolution imaging. Finally, prospective research and development tend of super diffraction laser fabrication technologies are presented. It is necessary to expand the range of materials which can be fabricated by laser beyond the diffraction limit, especially 2D materials.
        通信作者:许京军,jjxu@nankai.edu.cn
      • 基金项目:国家重点基础研究发展计划(批准号:2013CB328702)、国家自然科学基金(批准号:11674182)、天津市自然科学基金(批准号:17JCYBJC16700)、111计划(批准号:B07013)、教育部长江学者和创新团队发展计划(批准号:IRT_13R29)和山西大学极端光学协同创新中心资助的课题.
        Corresponding author:Xu Jing-Jun,jjxu@nankai.edu.cn
      • Funds:Project supported by the National Basic Research Program of China (Grant No. 2013CB328702), the National Natural Science Foundation of China (Grant No. 11674182), the Natural Science Foundation of Tianjin, China (Grant No. 17JCYBJC16700), the 111 Project, China (Grant No. B07013), the PCSIRT (Grant No. IRT_13R29), and the Collaborative Innovation Center of Extreme Optics of Shanxi University, China.
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

    • [1] 张林峰, 丁潇川, 侯智善, 曹宇.激光直写玻璃基平面波导用于荧光成像. 必威体育下载 , 2023, 72(7): 074203.doi:10.7498/aps.72.20222033
      [2] 潘鹏晖, 吉鹏飞, 林根, 董希明, 赵晋晖.飞秒激光加工熔融石英的理论和实验研究. 必威体育下载 , 2022, 71(24): 247901.doi:10.7498/aps.71.20221496
      [3] 郭金坤, 赵泽佳, 凌进中, 袁影, 王晓蕊.软物质激光微纳加工技术. 必威体育下载 , 2022, 71(17): 174203.doi:10.7498/aps.71.20220625
      [4] 张茜, 李萌, 龚旗煌, 李焱.飞秒激光直写光量子逻辑门. 必威体育下载 , 2019, 68(10): 104205.doi:10.7498/aps.68.20190024
      [5] 魏伟华, 李木天, 刘墨南.基于飞秒激光直写的单向单模耦合微腔. 必威体育下载 , 2018, 67(6): 064203.doi:10.7498/aps.67.20172395
      [6] 乔志星, 秦成兵, 贺文君, 弓亚妮, 张晓荣, 张国峰, 陈瑞云, 高岩, 肖连团, 贾锁堂.通过光致还原调制氧化石墨烯寿命并用于微纳图形制备. 必威体育下载 , 2018, 67(6): 066802.doi:10.7498/aps.67.20172331
      [7] 焦悦, 陶海岩, 季博宇, 宋晓伟, 林景全.用于飞秒激光纳米加工的TiO2粒子阵列诱导多种基底表面近场增强. 必威体育下载 , 2017, 66(14): 144203.doi:10.7498/aps.66.144203
      [8] 高斯, 王子涵, 滑建冠, 李乾坤, 李爱武, 于颜豪.飞秒激光加工蓝宝石超衍射纳米结构. 必威体育下载 , 2017, 66(14): 147901.doi:10.7498/aps.66.147901
      [9] 袁强, 赵文轩, 马睿, 张琛, 赵伟, 王爽, 冯晓强, 王凯歌, 白晋涛.基于偏振光相位调制的超衍射极限空间结构光研究. 必威体育下载 , 2017, 66(11): 110201.doi:10.7498/aps.66.110201
      [10] 王承伟, 赵全忠, 钱静, 黄媛媛, 王关德, 李阳博, 柏锋, 范文中, 李虹瑾.黑体辐射法测量电介质内部被超短激光脉冲加工后的温度. 必威体育下载 , 2016, 65(12): 125201.doi:10.7498/aps.65.125201
      [11] 林圆圆, 姜有恩, 韦辉, 范薇, 李学春.基于飞秒激光微加工的介质膜损伤修复研究. 必威体育下载 , 2015, 64(15): 154207.doi:10.7498/aps.64.154207
      [12] 刘双龙, 刘伟, 陈丹妮, 牛憨笨.超衍射极限相干反斯托克斯拉曼散射显微成像技术中空心光束的形成. 必威体育下载 , 2014, 63(21): 214601.doi:10.7498/aps.63.214601
      [13] 张朝阳, 李中洋, 秦昌亮, 印洁, 张长桃, 毛卫平, 冯钦玉.脉冲激光与电化学复合的应力刻蚀加工质量研究. 必威体育下载 , 2013, 62(9): 094210.doi:10.7498/aps.62.094210
      [14] 朱元庆, 曲兴华, 张福民, 陶会荣.实际加工表面红外激光散射特性的实验研究. 必威体育下载 , 2013, 62(24): 244201.doi:10.7498/aps.62.244201
      [15] 王文亭, 胡冰, 王明伟.飞秒激光精细加工含能材料. 必威体育下载 , 2013, 62(6): 060601.doi:10.7498/aps.62.060601
      [16] 云志强, 魏汝省, 李威, 罗维维, 吴强, 徐现刚, 张心正.6H-SiC的飞秒激光超衍射加工. 必威体育下载 , 2013, 62(6): 068101.doi:10.7498/aps.62.068101
      [17] 张国文, 卢兴强, 曹华保, 尹宪华, 吕凤年, 张臻, 李菁辉, 王仁贵, 马伟新, 朱俭.高功率激光光束经颗粒污染后的近场衍射效应. 必威体育下载 , 2012, 61(2): 024201.doi:10.7498/aps.61.024201
      [18] 于歌, 杨慎华, 王蒙, 寇淑清, 林宝君, 卢万春.Nd: YAG激光烧蚀裂解加工技术模拟分析与实验研究. 必威体育下载 , 2012, 61(9): 092801.doi:10.7498/aps.61.092801
      [19] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪.激光诱导等离子体加工石英微通道机理研究. 必威体育下载 , 2012, 61(11): 115201.doi:10.7498/aps.61.115201
      [20] 王锐, 杨建军, 梁春永, 王洪水, 韩伟, 杨阳.飞秒激光在空气和水中对硅片烧蚀加工的实验研究. 必威体育下载 , 2009, 58(8): 5429-5435.doi:10.7498/aps.58.5429
    计量
    • 文章访问数:8358
    • PDF下载量:565
    • 被引次数:0
    出版历程
    • 收稿日期:2017-04-28
    • 修回日期:2017-05-31
    • 刊出日期:2017-07-05

      返回文章
      返回
        Baidu
        map