搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

蒲明博, 王长涛, 王彦钦, 罗先刚

Subwavelength electromagnetics below the diffraction limit

Pu Ming-Bo, Wang Chang-Tao, Wang Yan-Qin, Luo Xian-Gang
PDF
导出引用
  • 作为波的本性之一,衍射是现代物理学的重要研究内容.衍射导致自由空间中波的能量不能被无限小地聚集,从而为成像、光刻、光存储、光波导等技术设定了一个原理性的障碍衍射极限.对于电磁波和光波而言,尽管通过提高介质的折射率可以压缩衍射效应,但由于自然界中材料的折射率有限,该方法存在很大限制.近年来,随着表面等离子体光学的兴起,表面等离子体在超越传统衍射极限方面的能力和应用前景受到了学术界的关注.本文从亚波长电磁学的角度出发,介绍衍射极限研究的历史,综述了突破衍射极限的理论方法.首先,利用金属介质表面等离子体激元的短波长特性,可将等效波长压缩一个数量级以上,在纳米尺度实现光波的聚焦或定向传输;更进一步,通过人为设计超构材料和超构表面,利用结构化金属和介质中的局域谐振、耦合等特殊电磁响应,可实现亚波长局域相位调制、超宽带色散调控、近完美吸收、光子自旋轨道耦合等,从而突破传统理论的诸多局限,为下一代电磁学和光学功能器件奠定重要基础.
    As a fundamental property of waves, diffraction plays an important role in many physical problems. However, diffraction makes waves in free space unable to be focused into an arbitrarily small space, setting a fundamental limit (the so-called diffraction limit) to applications such as imaging, lithography, optical recording and waveguiding, etc. Although the diffraction effect can be suppressed by increasing the refractive index of the surrounding medium in which the electromagnetic and optical waves propagate, such a technology is restricted by the fact that natural medium has a limited refractive index. In the past decades, surface plasmon polaritons (SPPs) have received special attention, owing to its ability to break through the diffraction limit by shrinking the effective wavelength in the form of collective excitation of free electrons. By combining the short wavelength property of SPPs and subwavelength structure in the two-dimensional space, many exotic optical effects, such as extraordinary light transmission and optical spin Hall effect have been discovered and utilized to realize functionalities that control the electromagnetic characteristics (amplitudes, phases, and polarizations etc.) on demand. Based on SPPs and artificial subwavelength structures, a new discipline called subwavelength electromagnetics emerged in recent years, thus opening a door for the next-generation integrated and miniaturized electromagnetic and optical devices and systems. In this paper, we review the theories and methods used to break through the diffraction limit by briefly introducing the history from the viewpoint of electromagnetic optics. It is shown that by constructing plasmonic metamaterials and metasurfaces on a subwavelength scale, one can realize the localized phase modulation and broadband dispersion engineering, which could surpass many limits of traditional theory and lay the basis of high-performance electromagnetic and optical functional devices. For instance, by constructing gradient phase on the metasurfaces, the traditional laws of reflection and refraction can be rewritten, while the electromagnetic and geometric shapes could be decoupled, both of which are essential for realizing the planar and conformal lenses and other functional devices. At the end of this paper, we discuss the future development trends of subwavelength electromagnetics. Based on the fact that different concepts, such as plasmonics, metamaterials and photonic crystals, are closely related to each other on a subwavelength scale, we think, the future advancements and even revolutions in subwavelength electromagnetics may rise from the in-depth intersection of physical, chemical and even biological areas. Additionally, we envision that the material genome initiative can be borrowed to promote the information exchange between different engineering and scientific teams and to enable the fast designing and implementing of subwavelength structured materials.
        通信作者:罗先刚,lxg@ioe.ac.cn
      • 基金项目:国家重点基础研究发展计划(批准号:2013CBA01700)和国家自然科学基金(批准号:61622508,61575201)资助的课题.
        Corresponding author:Luo Xian-Gang,lxg@ioe.ac.cn
      • Funds:Project supported by the National Basic Research Program of China (Grant No. 2013CBA01700) and the National Natural Science Foundation of China (Grant Nos. 61622508, 61575201).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

    • [1] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛.基于准连续域束缚态的全介质超构表面双参数传感器. 必威体育下载 , 2024, 73(4): 047802.doi:10.7498/aps.73.20231514
      [2] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧.基于柔性超构材料宽带调控太赫兹波的偏振态. 必威体育下载 , 2022, 71(18): 187802.doi:10.7498/aps.71.20220801
      [3] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林.基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 必威体育下载 , 2022, 71(3): 034208.doi:10.7498/aps.71.20211596
      [4] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林.基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 必威体育下载 , 2021, (): .doi:10.7498/aps.70.20211596
      [5] 王美欧, 肖倩, 金霞, 曹燕燕, 徐亚东.基于亚波长金属超构光栅的中红外大角度高效率回射器. 必威体育下载 , 2020, 69(1): 014211.doi:10.7498/aps.69.20191144
      [6] 林月钗, 刘仿, 黄翊东.基于超构材料的Cherenkov辐射. 必威体育下载 , 2020, 69(15): 154103.doi:10.7498/aps.69.20200260
      [7] 徐进, 李荣强, 蒋小平, 王身云, 韩天成.基于方形开口环的超宽带线性极化转换器. 必威体育下载 , 2019, 68(11): 117801.doi:10.7498/aps.68.20190267
      [8] 杨玖龙, 元晴晨, 陈润丰, 方汉林, 肖发俊, 李俊韬, 姜碧强, 赵建林, 甘雪涛.硅超构表面上强烈增强的三次谐波. 必威体育下载 , 2019, 68(21): 214207.doi:10.7498/aps.68.20190789
      [9] 林丹樱, 屈军乐.超分辨成像及超分辨关联显微技术研究进展. 必威体育下载 , 2017, 66(14): 148703.doi:10.7498/aps.66.148703
      [10] 刘仿, 李云翔, 黄翊东.基于双表面等离子激元吸收的纳米光刻. 必威体育下载 , 2017, 66(14): 148101.doi:10.7498/aps.66.148101
      [11] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿.超构材料中的光学量子自旋霍尔效应. 必威体育下载 , 2017, 66(22): 227803.doi:10.7498/aps.66.227803
      [12] 马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚.超构天线:原理、器件与应用. 必威体育下载 , 2017, 66(14): 147802.doi:10.7498/aps.66.147802
      [13] 邓俊鸿, 李贵新.非线性光学超构表面. 必威体育下载 , 2017, 66(14): 147803.doi:10.7498/aps.66.147803
      [14] 刘鸿吉, 刘双龙, 牛憨笨, 陈丹妮, 刘伟.基于环形抽运光的红外超分辨显微成像方法. 必威体育下载 , 2016, 65(23): 233601.doi:10.7498/aps.65.233601
      [15] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛.各向异性特异材料波导中表面等离子体的共振性质. 必威体育下载 , 2012, 61(6): 068401.doi:10.7498/aps.61.068401
      [16] 陈华, 汪力.金属导线偶合THz表面等离子体波. 必威体育下载 , 2009, 58(7): 4605-4609.doi:10.7498/aps.58.4605
      [17] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖.纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 必威体育下载 , 2009, 58(3): 1980-1986.doi:10.7498/aps.58.1980
      [18] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲.金属光子晶体平板的超强透射及其表面等离子体共振. 必威体育下载 , 2008, 57(6): 3506-3513.doi:10.7498/aps.57.3506
      [19] 花 磊, 宋国峰, 郭宝山, 汪卫敏, 张 宇.中红外下半导体掺杂调制的表面等离子体透射增强效应. 必威体育下载 , 2008, 57(11): 7210-7215.doi:10.7498/aps.57.7210
      [20] 高建霞, 宋国峰, 郭宝山, 甘巧强, 陈良惠.表面等离子体调制的纳米孔径垂直腔面发射激光器. 必威体育下载 , 2007, 56(10): 5827-5830.doi:10.7498/aps.56.5827
    计量
    • 文章访问数:10532
    • PDF下载量:1093
    • 被引次数:0
    出版历程
    • 收稿日期:2017-04-21
    • 修回日期:2017-05-19
    • 刊出日期:2017-07-05

      返回文章
      返回
        Baidu
        map