搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

司铁岩, 袁军华, 吴艺林, 唐建新

Physical biology of bacterial motility

Si Tie-Yan, Yuan Jun-Hua, Wu Yi-Lin, Jay X. Tang
PDF
导出引用
  • 细菌是一个包含从分子到宏观多尺度多系统强烈耦合的复杂生物体系. 细菌的运动行为在每一个时空尺度都蕴含有丰富的生物和物理学现象. 例如,细菌对氧气和很多化合物有很强的应激反应;细菌体内信号传感网络会影响细菌鞭毛马达的转动;纳米尺度的细菌鞭毛马达转动会影响细菌在界面附近的游动、趋化性、积聚、粘附、飞速旋转;单个细菌的活跃状态和环境的物理化学性质又会影响细菌部落的生长过程.微生物膜在空间中的扩张会形成丰富多彩的宏观自组织斑图. 细菌运动的物理生物学涉及到力学,流体和统计物理等等多个学科的研究范畴. 本文分别介绍细菌鞭毛马达、 细菌微生物膜的集群运动、细菌在界面的运动以及细菌趋化性和生化信号传感等方面的若干最新研究进展.
    Bacteria form a complex system. It consists of many components that cover broad size scales, including ions, small molecules, DNA, polymers, sub-micrometer sized organelles and compartments, micrometer sized cells, packs of cells in films of a few micrometers in thickness, large swarms or populations spanning plates over several centimeters in diameter, etc. The mechanisms to be explored span a wide range of time scales from micro-second or shorter for molecular interaction, to milli-second or longer times for diffusion and transport, up to minutes and hours for cellular metabolism, growth, and reproduction. An invisible colony of bacteria can grow rapidly and becomes visible to the human eye in several hours. Novel phenomena or behaviors emerge across these broad size and time scales. For example, the rotation direction and speed of a flagella motor, about 50 nm in diameter, are both tightly regulated by a signaling pathway within the cell. The fast rotation of the helical flagellum driven by the rotary motor is a key to explaining the bacterial swimming trajectory, chemo-taxis, accumulation, adhesion, or anchored body rotation near or at a solid surface. The activities of individual bacteria in response to their physicochemical environment give rise to their collective response such as quorum sensing, swarming, and growth of biofilms. The physical biology of bacteria is an interdisciplinary research covering micromechanics, micro-fluidics, non-equilibrium statistical physics, etc. This review covers several aspects of bacterial motility, including flagella motor behavior, bacterial swimming and accumulation near the surface, the self-organized patterns of bacterial swarms, and chemo-taxis regulated by the biochemical signaling network inside bacteria. Instead of presenting each aspect as a separate topic of microbiological study, we emphasize the strong relations among these topics, as well as the multidisciplinary perspective required to appreciate the strong relations among the topics covered. For instance, we point out the relevance of numerous phenomena in thin film fluid physics to bacterial swarming, such as capillary flow, surface tension reduction by surfactant, Marangoni flow, and viscous fingering. Another notable example is a recent application of a statistical mechanical theory called the first passage time theory to account for the intervals between the switches of bacterial motor rotation from clockwise to counter-clockwise, and vice versa. In concluding remarks, we point out a few open questions in the field of bacterial motility and likely advances that might transform the field. The central view conveyed through this review article is that further progress in the field demands interdisciplinary efforts. Therefore, a collaborative approach among those with both in depth knowledge and broad perspectives in biological and physical sciences will prove to be the most successful ones.
        通信作者:唐建新,jay_tang@brown.edu
      • 基金项目:美国国家自然基金(批准号:CBET 1438033)、中国科学院理论物理研究所理论物理国家重点实验室基金(批准号:Y4KF161CJ1)、中国国家留学基金、国家自然科学基金(批准号:11374282,21573214,21473152)和中国香港特区研究资助局(批准号:CUHK409713)资助的课题.
        Corresponding author:Jay X. Tang,jay_tang@brown.edu
      • Funds:Project is supported by the US National Science Foundation (Grant No. CBET 1438033), the National Natural Science Foundation of China (Grants 11374282, 21573214, and 21473152), the Research Grants Council of HKSAR (RGC Ref. No. CUHK 409713), and State Key Laboratory of Theoretical Physics in Institute of Theoretical Physics, Chinese Academy of Sciences, and China Scholarship Council.
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

    • [1] 石燕, 张天辉.自组织结构的控制: 从平衡过程到非平衡过程. 必威体育下载 , 2020, 69(14): 140503.doi:10.7498/aps.69.20200161
      [2] 尚向军, 马奔, 陈泽升, 喻颖, 查国伟, 倪海桥, 牛智川.半导体自组织量子点量子发光机理与器件. 必威体育下载 , 2018, 67(22): 227801.doi:10.7498/aps.67.20180594
      [3] 吴晓娲, 秦四清, 薛雷, 杨百存, 张珂.孕震断层锁固段累积损伤导致失稳的自组织-临界行为特征. 必威体育下载 , 2018, 67(20): 206401.doi:10.7498/aps.67.20180614
      [4] 孙保安, 王利峰, 邵建华.非晶力学流变的自组织临界行为. 必威体育下载 , 2017, 66(17): 178103.doi:10.7498/aps.66.178103
      [5] 余旭涛, 徐进, 张在琛.基于量子远程传态的无线自组织量子通信网络路由协议. 必威体育下载 , 2012, 61(22): 220303.doi:10.7498/aps.61.220303
      [6] 董丽芳, 谢伟霞, 赵海涛, 范伟丽, 贺亚峰, 肖红.氩气/空气介质阻挡放电自组织超六边形斑图实验研究. 必威体育下载 , 2009, 58(7): 4806-4811.doi:10.7498/aps.58.4806
      [7] 黄丽清, 潘华强, 王 军, 童慧敏, 朱 可, 任冠旭, 王永昌.多孔氧化铝膜上自组织生长Sn纳米点阵列的研究. 必威体育下载 , 2007, 56(11): 6712-6716.doi:10.7498/aps.56.6712
      [8] 周海平, 蔡绍洪, 王春香.含崩塌概率的一维沙堆模型的自组织临界性. 必威体育下载 , 2006, 55(7): 3355-3359.doi:10.7498/aps.55.3355
      [9] 张 林, 孔红艳, 杨国健.约束阱中受激发原子的集体反弹效应所导致的自组织行为. 必威体育下载 , 2006, 55(10): 5122-5128.doi:10.7498/aps.55.5122
      [10] 董庆瑞, 牛智川.垂直耦合自组织InAs双量子点中激子能的计算. 必威体育下载 , 2005, 54(4): 1794-1798.doi:10.7498/aps.54.1794
      [11] 张永炬, 余森江.准自由支撑铝薄膜中有序表面结构的自组织生长. 必威体育下载 , 2005, 54(10): 4867-4873.doi:10.7498/aps.54.4867
      [12] 董丽芳, 毛志国, 冉俊霞.氩气介质阻挡放电不同放电模式的电学特性研究. 必威体育下载 , 2005, 54(7): 3268-3272.doi:10.7498/aps.54.3268
      [13] 尹增谦, 柴志方, 董丽芳, 李雪辰.大气压氩气放电中的斑图形成. 必威体育下载 , 2003, 52(4): 925-928.doi:10.7498/aps.52.925
      [14] 卢励吾, 王占国, C.L.Yang, J.Wang, Z.H.Ma, I.K.Sou, WeikunGe.分子束外延生长ZnSe自组织量子点光、电行为研究. 必威体育下载 , 2002, 51(2): 310-314.doi:10.7498/aps.51.310
      [15] 张永平, 闫隆, 解思深, 庞世谨, 高鸿钧.Si(111)-(7×7)表面上Ge量子点的自组织生长. 必威体育下载 , 2002, 51(2): 296-299.doi:10.7498/aps.51.296
      [16] 董丽芳, 李雪辰, 尹增谦, 王龙.大气压介质阻挡放电中的自组织斑图结构. 必威体育下载 , 2002, 51(10): 2296-2301.doi:10.7498/aps.51.2296
      [17] 何声太, 姚建年, 汪裕萍, 江鹏, 时东霞, 解思深, 庞世瑾, 高鸿钧.银纳米粒子自组织二维有序阵列. 必威体育下载 , 2001, 50(4): 765-768.doi:10.7498/aps.50.765
      [18] 司俊杰, 杨沁清, 滕 达, 王红杰, 余金中, 王启明, 郭丽伟, 周均铭.(113)面硅衬底上自组织生长的GeSi量子点及其光荧光. 必威体育下载 , 1999, 48(9): 1745-1750.doi:10.7498/aps.48.1745
      [19] 吕振东, 李 晴, 许继宗, 郑宝真, 徐仲英, 葛惟锟.自组织生长InAs/GaAs量子点发光动力学研究. 必威体育下载 , 1999, 48(4): 744-750.doi:10.7498/aps.48.744
      [20] 王志明, 封松林, 吕振东, 杨小平, 陈宗圭, 宋春英, 徐仲英, 郑厚植, 王凤莲, 韩培德, 段晓峰.自组织InAs/GaAs量子点垂直排列生长研究. 必威体育下载 , 1998, 47(1): 89-93.doi:10.7498/aps.47.89
    计量
    • 文章访问数:7541
    • PDF下载量:562
    • 被引次数:0
    出版历程
    • 收稿日期:2016-05-16
    • 修回日期:2016-08-01
    • 刊出日期:2016-09-05

      返回文章
      返回
        Baidu
        map