专题: 面向类脑计算的物理电子学
2022, 71 (14): 140101.
doi: 10.7498/aps.71.140101
摘要 +
类脑计算技术作为一种脑启发的新型计算技术, 具有存算一体、事件驱动、模拟并行等特征, 为智能化时代开发高效的计算硬件提供了技术参考, 有望解决当前人工智能硬件在能耗和算力方面的“不可持续发展”问题. 硬件模拟神经元和突触功能是发展类脑计算技术的核心, 而支持这一切实现的基础是器件以及器件中的物理电子学. 根据类脑单元实现的物理基础, 当前类脑芯片主要可以分为数字CMOS型、数模混合CMOS型以及新原理器件型三大类. IBM的TrueNorth、Intel的Loihi、清华大学的Tianjic以及浙江大学的Darwin等都是数字CMOS型类脑芯片的典型代表, 旨在以逻辑门电路仿真实现生物单元的行为. 数模混合型的基本思想是利用亚阈值模拟电路模拟生物神经单元的特性, 最早由Carver Mead提出, 其成功案例有苏黎世的ROLLs、斯坦福的Neurogrid等. 以上两种类型的类脑芯片虽然实现方式上有所不同, 但共同之处在于都是利用了硅基晶体管的物理特性. 此外, 以忆阻器为代表的新原理器件为构建非硅基类脑芯片提供了新的物理基础. 它们在工作过程中引入了离子动力学特性, 从结构和工作机制上与生物单元都具有很高的相似性, 近年来受到国内外产业界和学术界的广泛关注. 鉴于硅基工艺比较成熟, 当前硅基物理特性是类脑芯片实现的主要基础. 忆阻器等新原理器件的类脑计算技术尚处于前沿探索和开拓阶段, 还需要更成熟的制备技术、更完善的系统框架和电路设计以及更高效的算法等.

2022, 71 (14): 140501.
doi: 10.7498/aps.71.20220666
摘要 +
随着深度学习的高速发展, 目前智能算法的飞速更新迭代对硬件算力提出了很高的要求. 受限于摩尔定律的告竭以及冯·诺伊曼瓶颈, 传统CMOS集成无法满足硬件算力提升的迫切需求. 利用新型器件忆阻器构建神经形态计算系统可以实现存算一体, 拥有极高的并行度和超低功耗的特点, 被认为是解决传统计算机架构瓶颈的有效途径, 受到了全世界的广泛关注. 本文按照自下而上的顺序, 首先综述了主流忆阻器的器件结构、物理机理, 并比较分析了它们的性能特性. 然后, 介绍了近年来忆阻器实现人工神经元和人工突触的进展, 包括具体的电路形式和神经形态功能的模拟. 接着, 综述了无源和有源忆阻阵列的结构形式以及它们在神经形态计算中的应用, 具体包括基于神经网络的手写数字和人脸识别等. 最后总结了目前忆阻类脑计算从底层到顶层所遇到的挑战, 并对该领域后续的发展进行了展望.

2022, 71 (14): 147301.
doi: 10.7498/aps.71.20220308
摘要 +
生物感知系统具有高并行、高容错、自适应和低功耗等独特优点. 采用神经形态器件实现生物感知功能的仿生, 在脑机接口、智能感知、生物假体等领域具有重大应用前景. 与其他神经形态器件相比, 多端口神经形态晶体管不仅可以同时实现信号的传输和训练学习, 还可以对多路信号进行非线性的时空整合与协同调控. 然而, 传统刚性神经形态晶体管很难实现弯曲变形以及和人体密切贴合, 限制了神经形态器件应用范围. 所以, 具有良好弯曲特性的柔性神经形态晶体管的研究成为了最近的研究重点. 本文首先介绍了多种柔性神经形态晶体管的研究进展, 包括器件结构、工作原理和基本功能; 另外, 本文还将介绍上述柔性神经形态晶体管在仿生感知领域中的应用; 最后给出上述研究领域的总结和简单展望.

2022, 71 (14): 148502.
doi: 10.7498/aps.71.20220226
摘要 +
交互式人工智能系统的构建依赖于高性能人工感知系统和处理系统的开发. 传统的感知处理系统传感器、存储器和处理器在空间上是分离的, 感知数据信息的频繁传输和数据格式转换造成了系统的长延时与高能耗. 受生物感知神经系统的启发, 耦合感知、存储、计算功能的感存算一体化技术为未来感知处理领域提供了可靠的技术方案. 具有感知光、压力、化学物质等能力的忆阻器是应用于感存算一体系统的理想器件. 本文从器件层面综述了应用于感存算一体化系统忆阻器的研究方向和研究进展, 包括视觉、触觉、嗅觉、听觉和多感官耦合类别, 并在器件、工艺与集成、电路系统架构和算法方面指出现阶段的挑战与展望, 为未来神经形态感存算一体化系统的发展提供可行的研究方向.

2022, 71 (14): 148504.
doi: 10.7498/aps.71.20220463
摘要 +
随着搭载于边缘终端上的图像与视频等数据密集型应用的日益增长, 基于传统冯·诺依曼架构的互补金属氧化物半导体(complementary metal oxide semiconductor, CMOS)硬件系统正面临着能耗、速度和尺寸等多方面的挑战. 神经形态器件包括具有存算一体特性的电学阻变器件和具有感存算一体特性的光电阻变器件, 因其具有与生物神经系统的高相似度, 及其高能效、高集成度、宽带宽等优势, 在图像处理应用方面展现出巨大发展潜力. 这类器件不仅能够用于加速传统图像低阶预处理和高阶处理中的大量运算, 且能用于实现仿生物视觉系统的高效图像处理算法. 本文介绍了最近的电学及光电神经形态阻变器件, 并结合图像处理算法综述了神经形态阻变器件在图像处理方面的硬件实施和挑战, 并对其发展前景提出了思考.

2022, 71 (14): 148505.
doi: 10.7498/aps.71.20220111
摘要 +
传统冯·诺依曼计算机在并行性计算和自适应学习方面效率较低, 无法满足当前飞速发展的信息技术对高效、高速计算的迫切需求. 受脑启发的神经形态计算具有高度并行性、超低功耗等优势, 被认为是打破传统计算机局限性, 实现新一代人工智能的理想途径. 神经形态器件是实施神经形态计算的硬件载体, 是构建神经形态芯片的关键. 与此同时, 人类视觉系统与光遗传学的发展为神经形态器件的研究提供了新的思路. 新兴的光电神经形态器件结合了光子学与电子学各自的优势, 在神经形态计算领域展露出巨大潜力, 受到了国内外研究人员广泛关注. 本文对光电神经形态器件及其应用的最新研究进行了总结. 首先综述了人工光电突触与人工光电神经元, 内容包括器件结构、工作机制以及神经形态功能模拟等方面. 然后, 对光电神经形态器件在人工视觉系统、人工感知系统、神经形态计算等领域中的潜在应用作了阐述. 最后, 总结了当前光电神经形态器件所面临的挑战, 并对其未来的发展方向进行了展望.

2022, 71 (14): 148507.
doi: 10.7498/aps.71.20220397
摘要 +
通过在基本单元上集成存储和计算功能, 存内计算技术能够显著降低数据搬运规模, 被广泛认为是突破传统冯·诺依曼计算架构性能瓶颈的新型计算范式. 非挥发存储器件兼具非易失特性和存算融合功能, 是实现存内计算的良好功能器件. 本文首先介绍了存内计算范式的基本概念, 包括技术背景和技术特征. 然后综述了用于实现存内计算的非挥发存储器件及其性能特征, 包含传统闪存器件和新型阻变存储器; 进一步介绍了基于非挥发存储器件的存内计算实现方法, 包括存内模拟运算和存内数字运算. 之后综述了非挥发存内计算系统在深度学习硬件加速、类脑计算等领域的潜在应用. 最后, 对非挥发型存内计算技术的未来发展趋势进行了总结和展望.

2022, 71 (14): 148701.
doi: 10.7498/aps.71.20220350
摘要 +
脑启发神经形态计算系统有望从根本上突破传统冯·诺依曼计算机系统架构瓶颈, 极大程度地提升数据处理速度和能效. 新型神经形态器件是构建高能效神经形态计算的重要硬件基础. 光电忆阻器作为新兴的纳米智能器件, 因具备整合光学感知、信息存储和逻辑计算等功能特性, 被认为是发展类脑视觉系统的重要备选. 本文将综述面向感存算功能一体化的光电忆阻器研究进展, 包括光电忆阻材料与机制、光电忆阻器件与特性、感存算一体化功能及应用等. 具体将根据机制分类介绍光子-离子耦合型和光子-电子耦合型光电忆阻材料, 根据光电忆阻特性调节方式介绍光电调制型和全光调制型光电忆阻器件, 根据感存算一体化功能介绍其在认知功能模拟、光电逻辑运算、神经形态视觉功能、动态探测与识别等方面的应用. 最后总结光电忆阻器的主要优势以及所面临的挑战, 并展望光电忆阻器的未来发展.

2022, 71 (14): 148702.
doi: 10.7498/aps.71.20220281
摘要 +
生物感官集感知、存储与运算为一体的架构使其可以高效并且实时地采集和处理外界信息, 这样的感存算一体化架构可为物联网时代面临的传感器数据爆炸问题提供很好的解决方案. 为此, 本文提出仿生生物感官的感存算一体化系统, 采用不同的传感器模拟生物感受器的功能, 以获取环境信息, 传感器输出的模拟信号输入到模拟信号处理系统进行预处理, 这样信号不需要在模拟域与数字域之间转换, 可极大降低功耗和延时; 预处理后的信号输入类脑运算芯片中进行分析和决策, 该芯片由基于忆阻器的人工突触及人工神经元组成, 通过控制突触与神经元的连接方式, 可以实现不同的算法架构, 如全连接脉冲神经网络、卷积脉冲神经网络以及循环脉冲神经网络等; 通过运行不同的神经网络, 类脑运算芯片可以实现对不同传感器信号的识别、预测以及分类等任务; 更进一步, 将多种仿生感觉系统的识别或预测结果结合起来, 就可以实现多感官融合, 这样的系统架构可以用于自动驾驶及智能机器人等复杂的场景中.

2022, 71 (14): 140701.
doi: 10.7498/aps.71.20220082
摘要 +
储池计算是类脑计算范式的一种, 具有结构简单、训练参数少等特点, 在时序信号处理、混沌动力学系统预测等方面有着巨大的应用潜力. 本文提出了一种基于存内计算范式的储池计算硬件实现方法, 利用忆阻器阵列完成非线性向量自回归过程中的矩阵向量乘法操作, 有望进一步提升储池计算的能效. 通过忆阻器阵列仿真实验, 在Lorenz63时间序列预测任务中验证了该方法的可行性, 以及该方法在噪声条件下预测结果的鲁棒性, 并探究忆阻器阵列阻值精度对预测结果的影响. 这一结果为储池计算的硬件实现提供了一种新的途径.

2022, 71 (14): 148401.
doi: 10.7498/aps.71.20220098
摘要 +
脉冲神经网络(spiking neural network, SNN)作为第三代神经网络, 其计算效率更高、资源开销更少, 且仿生能力更强, 展示出了对于语音、图像处理的优秀潜能. 传统的脉冲神经网络硬件加速器通常使用加法器模拟神经元对突触权重的累加. 这种设计对于硬件资源消耗较大、神经元/突触集成度不高、加速效果一般. 因此, 本工作开展了对拥有更高集成度、更高计算效率的脉冲神经网络推理加速器的研究. 阻变式存储器(resistive random access memory, RRAM)又称忆阻器(memristor), 作为一种新兴的存储技术, 其阻值随电压变化而变化, 可用于构建crossbar架构模拟矩阵运算, 已经在被广泛应用于存算一体(processing in memory, PIM)、神经网络计算等领域. 因此, 本次工作基于忆阻器阵列, 设计了权值存储矩阵, 并结合外围电路模拟了LIF (leaky integrate and fire)神经元计算过程. 之后, 基于LIF神经元模型实现了脉冲神经网络硬件推理加速器设计. 该加速器消耗了0.75k忆阻器, 集成了24k神经元和192M突触. 仿真结果显示, 在50 MHz的工作频率下, 该加速器通过部署三层的全连接脉冲神经网络对MNIST (mixed national institute of standards and technology)数据集进行推理加速, 其最高计算速度可达148.2 frames/s, 推理准确率为96.4%.

2022, 71 (14): 148501.
doi: 10.7498/aps.71.20220303
摘要 +
神经形态电子学的迅速发展为生物神经系统仿生与模拟提供了有力支持. 具有三明治结构的两端人造突触电子器件不仅在结构上模拟了生物突触, 同时在类神经电脉冲信号的作用下可以完成对生物突触塑性的模拟与调控. 本文利用溶胶-凝胶法合成了具有层状结构的P3相Na2/3Ni1/3Mn2/3O2多元金属氧化物. 借助其晶体结构中Na+易于嵌入/脱出的特性, 设计并制备了基于Na2/3Ni1/3Mn2/3O2的离子迁移型人造突触, 器件在电脉冲信号的刺激下实现了对生物突触塑性的模拟, 并通过调校类神经尖峰脉冲信号, 成功对塑性行为进行了调控. 成功模拟了兴奋性突触后电流、双脉冲易化、脉冲数量依赖可塑性、脉冲频率依赖可塑性、脉冲电压幅值依赖可塑性和脉冲持续时间依赖可塑性. 同时, 器件实现了对摩斯电码指令的准确识别与响应.

封面文章
2022, 71 (14): 148503.
doi: 10.7498/aps.71.20212323
摘要 +
受人脑工作模式的启发, 脉冲神经元作为人工感知系统和神经形态计算体系的基本计算单元发挥着重要作用. 然而, 基于传统互补金属氧化物半导体技术的神经元电路结构复杂, 功耗高, 且缺乏柔韧性, 不利于大规模集成和与人体兼容的柔性感知系统的应用. 本文制备的柔性忆阻器展示出了稳定的阈值转变特性和优异的机械弯折特性, 其弯折半径可达1.5 mm, 弯折次数可达104次. 基于此器件构建的神经元电路实现了神经元的关键积分放电特性, 且其频率-输入电压关系具有整流线性单元相似性, 可实现基于转换法的脉冲神经网络中神经元的非线性处理功能. 此外, 基于电子传输机制和构建的核壳模型, 对柔性忆阻器的工作机制进行分析, 提出了电场和热激发主导的阈值转变机制; 进一步对忆阻器和神经元的电学特性进行电路仿真模拟, 验证了柔性忆阻器和神经元电路工作机制的合理性. 本文对柔性神经元的研究可为神经形态感知和计算系统的构建提供硬件基础和理论指导.

2022, 71 (14): 148506.
doi: 10.7498/aps.71.20220252
摘要 +
利用新型材料器件发展类脑计算硬件研究的关键问题是发展出合适的算法, 能够发挥新器件的特点和优势. 群体编码是生物神经系统常见的编码方式, 能够有效去除噪音, 实现短时程记忆及复杂的非线性映射功能. 本文选择自旋电子学器件中研究较多、工艺较成熟的磁性隧道结, 应用其可调控的随机动力学实现群体编码. 作为一个应用的例子, 超顺磁隧道结构建的二层脉冲神经网络成功完成了鸢尾花数据集的无监督聚类. 数值仿真表明基于磁性隧道结的群体编码可以有效对抗器件的非均一性, 为类脑计算硬件研究提供重要的参考.
总论

2022, 71 (14): 140201.
doi: 10.7498/aps.71.20212420
摘要 +
根据广义Huygens-Fresnel原理, 推导了von Karman湍流谱条件下激光回波复相干度的理论解析式; 基于湍流相位屏分步传输算法和随机粗糙目标表面模型, 实现了激光回波光场的仿真计算. 首先通过镜面反射回波光场的仿真分析, 验证了算法的正确性; 然后基于1.1 km的均匀传输路径, 综合分析了随机粗糙目标表面特性和路径湍流强度对回波光场复相干度的影响. 结果表明: 回波光场的空间相干性随目标表面高度均方根的增大而降低, 随目标表面相关长度的减小而降低; 当表面相关长度远小于大气相干长度时, 回波相干性会被严重破坏. 该研究可为目标表面特性或利用已知表面获取路径湍流状态的相干探测提供有益的参考.

2022, 71 (14): 140301.
doi: 10.7498/aps.71.20212334
摘要 +
经典电磁场互易定理(即洛伦兹互易定理)作为电磁学重要的理论之一, 被广泛应用于通信、天线信号传输和电磁成像等诸多领域, 它是一种“能量型”互易定理. 已有研究用微分形式扩展“Rumsey反应”的概念, 使其同时包含了洛伦兹力密度反应和功率密度反应项. 进一步有研究从麦克斯韦方程组导出了动量互易定理. 动量互易定理与洛伦兹互易定理一样, 既可以用于理论分析, 也可以解决实际应用问题. 因此利用洛伦兹互易定理可导出惠更斯原理, 本文利用动量互易定理导出惠更斯原理.

2022, 71 (14): 140702.
doi: 10.7498/aps.71.20220053
摘要 +
高压调控是一种能够对材料的结构、电学、光学等物理特性实现高效、连续且可逆变化的实验手段; 拉曼光谱则是一种能够对材料的晶相等结构信息实现精准、快速、无损分析的研究方法. 本文结合了金刚石对顶砧高压技术和原位偏振拉曼光谱技术, 对二硫化铼(ReS2)晶体的拉曼振动模式随压强的演变过程进行了深入研究. 实验发现ReS2的常压相(1T' )在3.04 GPa的压强下转变为一个扭曲1T' 相, 继而在14.24 GPa压强下发生了Re4原子簇的层内形变, 并且在22.08和25.76 GPa分别发生了不同方向的层间无序叠加向有序叠加的转变. 这一系列独特的实验现象充分展现了该二维材料的面内各向异性, 并证实ReS2晶体的各向异性随压强的增加而变得愈发显著. 本文研究表明压强在调节材料性能方面的关键作用, 揭示了ReS2晶体在制备各向异性光学器件和光电器件等方面的潜力.
原子和分子物理学

2022, 71 (14): 143101.
doi: 10.7498/aps.71.20212318
摘要 +
镁合金作为最轻的金属结构材料, 被誉为21世纪的“绿色工程材料”, 具有广阔的应用前景. 晶体-非晶双相纳米镁材料更是表现了优异力学性能, 但是晶体中位错与非晶相的相互作用机制尚不明确. 本文采用分子动力学模拟方法研究了剪切载荷作用下纳米晶镁中刃位错与非晶相的相互作用机制. 研究结果表明, 纳米晶镁中非晶相与位错的相互作用机制表现出一定的尺寸依赖性. 相较于非晶相尺寸较小的样品, 较大的非晶相尺寸会导致较大的二次应力强化现象. 非晶相和位错的作用机制主要归结为非晶相对位错的钉扎作用. 对于非晶相尺寸较小的样品, 非晶相对位错的钉扎作用有限, 钉扎时间较短, 其相互作用主要是位错绕过非晶相的机制; 而对于非晶相尺寸较大的样品, 非晶相对位错的钉扎作用较大, 钉扎时间较长, 其相互作用主要是非晶相引发的位错的交滑移机制. 本文的研究结果对于设计和制备高性能的镁及其合金材料具有一定的参考价值和指导意义.

2022, 71 (14): 143102.
doi: 10.7498/aps.71.20220043
摘要 +
采用考虑Davidson修正的多参考组态相互作用(MRCI+Q)方法, 计算了氮气分子${X^1}\Sigma _{\rm{g}}^ + ,{a^\prime }^1\Sigma _{\rm{u}}^ - ,{a^1}{\Pi _{\rm{g}}}$ 和b1Пu电子态的势能曲线、偶极跃迁矩阵元、光谱常数和振动能级, 计算结果与其他实验和理论数据符合较好. 基于分子结构数据, 研究了氮气分子在100 atm (1 atm = 1.01×105 Pa)压强下, 295—20000 K温度范围内的不透明度. 结果表明, 在波长分布范围内, 不透明度随着温度的升高而变大; 当温度小于5000 K时, 不透明度主要分布在紫外区域, 当温度大于10000 K时, 激发态的贡献使得不透明度在红外区域也开始有明显的布居. 本文探明了温度效应对氮气分子不透明度的影响, 可以为天体物理和核武器领域提供理论和数据支持.

2022, 71 (14): 143201.
doi: 10.7498/aps.71.20220341
摘要 +
极紫外(extreme ultraviolet, XUV)光与物质相互作用是探索微观粒子内部结构的重要方式. 本文利用反应显微成像谱仪测量了Ne, Xe原子在XUV光作用下单电离与双电离的电子角分布, 提取了Ne原子2p电子和Xe原子5p, 5s电子电离的β不对称参数, 并结合前人已发表的实验数据与不同的理论模型进行对比. 结果表明Ne原子2p壳层电子电离受电子关联效应影响较弱; Xe原子5p电子电离受电子关联效应影响强, 且不受相对论效应的影响, 但这两种效应在Xe原子5s电子电离过程中都发挥了重要作用. 此外, 研究还发现Xe原子双电离存在直接双电离和间接双电离两种机制, 并给出了间接双电离第一步与第二步光电子角分布与β不对称参数信息.
电磁学、光学、声学、传热学、经典力学和流体动力学

2022, 71 (14): 144101.
doi: 10.7498/aps.71.20220339
摘要 +
电化学反应过程中离子迁移、氧化还原反应的原位动态观测对研究电解池和电池充放电性能、离子迁移特性、缺陷产生和预防等具有重要意义. 采用电解池模型研究电化学反应过程以方便实验参数调控, 基于运动衬度X射线成像实验研究了其离子迁移和氧化还原反应过程. 结果表明, 同等条件下运动衬度X射线成像比传统的时间减影成像的衬噪比高一个量级以上. 基于运动衬度X射线成像成功观测到起始阶段电化学反应特性, 发现电化学反应在电解池内所有位置同时发生, 而不是通常理解的电场力作用下离子迁移到阴极、得到电子被还原. 电极投影位置运动衬度信号强于电解液其他位置, 说明电极位置氧化还原反应更密集. 在通电电压低到一个临界值、传统时间减影成像很难观测到离子迁移或原子团聚的时候, 运动衬度成像仍可明确揭示离子迁移(原子团簇运动)轨迹. 因此, 运动衬度X射线成像可大幅提升电解质中离子(原子)迁移的观测灵敏度, 在电池、电解池电化学反应特性的原位动态研究中具有重要应用前景.

编辑推荐
2022, 71 (14): 144201.
doi: 10.7498/aps.71.20212247
摘要 +
采用磁性电磁超构材料, 设计了具有柱对称梯度折射率分布的二维体系, 根据梯度的不同可以实现光束的不同调制功能. 通过等效介质理论, 可以计算磁性电磁超构材料的等效电磁参数, 从而获得等效折射率. 而且, 随着磁性柱半径的变化, 可以实现等效折射率的灵活调制. 尤为特别的是, 通过改变外加偏置磁场的空间分布, 可以实现不同的折射率梯度, 这也是磁性电磁超构材料相对于普通介质体系的优越性. 基于多重散射理论, 对光束在二维体系中的传输行为进行了模拟计算, 研究结果表明通过调制外加偏置磁场可以实现光束的囚禁、光束的内偏折和外偏折、以及分束等功能. 而且, 通过改变外加磁场可以实现不同功能间的切换, 这种灵活的调制能力为光束传输提供了新的自由度.